Skip to main content
Log in

Influence of fluid flow on the regional thermal field: results from 3D numerical modelling for the area of Brandenburg (North German Basin)

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

We analyse the effect of fluid flow on the recent thermal field for the Brandenburg region (North German Basin) which is strongly affected by salt structures. The basin fill is modified by a thick layer of mobilized salt (Zechstein, Upper Permian) that decouples the overburden from deeper parts of the lithosphere and is responsible for thermal anomalies since salt has a distinctly higher thermal conductivity than the surrounding sediments and is impermeable to fluid flow. Numerical simulations of coupled fluid flow and heat transfer are carried out to investigate the influence of fluid flow on the shallow temperature field above the Zechstein salt, based on the finite element method. A comparison of results from conductive and coupled modelling reveals that the temperature field down to the low-permeable Triassic Muschelkalk is influenced by fluids, where the shallow low-permeable Tertiary Rupelian-clay is absent. Overall cooling is induced by forced convective forces, the depth range of which is controlled by the communication pathways between the different aquifers. Moreover, buoyancy-induced effects are found in response to temperature-dependent differences in the fluid density where forced convective forces are weak. The range of influence is controlled by the thickness and the permeability of the permeable strata above the Triassic Muschelkalk. With increasing depth, thermal conduction mainly controls the short-wavelength pattern of the temperature distribution, whereas the long-wavelength pattern results from interaction between the highly conductive crust and low-conductive sediments. Our results provide generic implications for basins affected by salt tectonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24

  • Artemieva I (1997) In situ permeability of hot dry rock. In: Middleton MF (ed) Fractured reservoirs. Nordic Petroleum Technology Series, Part 1, Goteborg, pp 99–124

  • Balling N, Kristiansen JI, Breiner N, Poulsen KD, Rasmussen R, Saxov S (1981) Geothermal measurements and subsurface temperature modelling in Denmark. Department of Geology, Aarhus University, GeoSrifter, 16

  • Bayer U, Scheck M, Koehler M (1997) Modeling of the 3D thermal field in the northeast German Basin. Geol Rundsch 86:241–251

    Article  Google Scholar 

  • Beer H, Hurtig E (1999) Das geothermische Feld in Brandenburg. Brandenburgische Geowissenschaftliche Beiträge 6:57–68

  • Cacace M, Kissling W (2012) Hot and saline spring behaviour in the Taupo Volcanic Zone and the North-East German Basin. In: Poster, EGU General Assembly 2012, vol 14, EGU2012-1927-1

  • Cacace M, Scheck-Wenderoth M (2010a) Modeling the thermal field and the impact of salt structures in the North East German Basin. Proceedings of the World Geothermal Congress, Bali

  • Cacace M, Kaiser BO, Lewerenz B, Scheck-Wenderoth M (2010) Geothermal energy in sedimentary basins: what can we learn from regional numerical models. Chemie der Erde-Geochemistry 70:33–46

    Article  Google Scholar 

  • Cacace M, Blöcher G, Watanabe N, Moeck I, Börsing N, Scheck-Wenderoth M, Kolditz O, Huenges E (2013): Modelling of fractured carbonate reservoirs—outline of a novel technique via a case study from the molasse basin, southern Bavaria (Germany). Environ Earth Sci. doi:10.1007/s12665-013-2402-3

  • Čermák V, Huckenholz HG, Rybach L, Schmid R, Schopper JR, Schuch M, Stöffler D, Wohlenberg J (1982) Physical properties of rocks, vol 1, Subvol a. In: Angenheister G (ed) Landolt-Börnstein, new series, V/1a: geophysics and space research. Springer, Berlin, pp 1–373

    Google Scholar 

  • Cherubini Y, Cacace M, Blöcher G, Scheck-Wenderoth M (2013) Impact of single inclined faults on the fluid flow and heat transport: results from 3D finite element simulations. Environ Earth Sci. doi:10.1007/s12665-012-2212-z

  • Cherubini Y, Cacace M, Scheck-Wenderoth M, Moeck I, Lewerenz B (2013) Controls on the deep thermal field—implications from 3D numerical simulations for the geothermal research site Groß Schönebeck. Environ Earth Sci. doi:10.1007/s12665

  • Deming D (1994) Fluid flow and heat transport in the upper continental crust. In: Parnell P (ed), Geofluids: origin, migration and evolution of fluids in sedimentary basins. J Geol Soc Lond Spec Publ 78:27–40

    Google Scholar 

  • Diersch H-JG (2009) FEFLOW Finite element subsurface flow & transport simulation system, Reference Manual. WASY GmbH Institute for Water Resources Planning and Systems Research, Berlin

  • Förster A (2001) Analysis of borehole temperature data in the Northeast German Basin: continuous logs versus bottom-hole temperatures. Petroleum Geosci 7:241–254

    Article  Google Scholar 

  • Fuchs S, Förster A (2010) Rock thermal conductivity of Mesozoic geothermal aquifers in the Northeast German Basin. Chemie Der Erde-Geochemistry 70:13–22

    Article  Google Scholar 

  • Garven G (1995) Continental-scale groundwater flow and geologic processes. Annu Rev Earth Planet Sci 23(1):89–117

    Article  Google Scholar 

  • Huenges E (ed) (2010) Geothermal energy systems. Wiley, Weinheim

    Google Scholar 

  • Ingebritsen SE and Sanford WE (1998) Groundwater in geologic processes, Cambridge University Press, New York, p 341

  • Kaiser BO, Cacace M, Scheck-Wenderoth M, Lewerenz B (2011) Characterization of main heat transport processes in the Northeast German Basin: Constraints from 3-D numerical models. Geochem Geophys Geosyst 12, Q07011. doi:10.1029/2011GC003535

  • Lampe C, Person M (2002) Advective cooling within sedimentary rift basins - application to the Upper Rhinegraben (Germany). Mar Petrol Geol 19:361–375

    Article  Google Scholar 

  • Ledru P, Frottier LG (2010) Reservoir definition. In: Huenges E (ed) Geothermal energy systems. Wiley, Weinheim, pp 1–36

    Chapter  Google Scholar 

  • Luijendijk E, Person MA, van Balen R, ter Voorde M (2010) The effect of topography driven groundwater flow on deep subsurface temperatures in the Roer Valley Graben (southern Netherlands). In: Abstract V13B-2361 Poster, 2010 Fall Meeting AGU, San Francisco

  • Luijendijk E, ter Voorde M, van Balen RT, Verweij H, Simmelink E (2011) Thermal state of the Roer Valley Graben, part of the European Cenozoic Rift System. Basin Res 23(1):65–82

    Article  Google Scholar 

  • Magri F (2005) Mechanismus und Fluiddynamik der Salzwasserzirkulation im Norddeutschen Becken: Ergebnisse thermohaliner numerischer Simulationen (Dissertation Thesis, Freie Universität Berlin). Scientific Technical Report STR05/12, GeoForschungsZentrum Potsdam, pp 1–131

  • Magri F, Bayer U, Clausnitzer V, Jahnke C, Fuhrmann J, Moller P, Pekdeger A, Tesmer M, Voigt H (2005a) Deep reaching fluid flow close to convective instability in the NE German basin—results from water chemistry and numerical modelling. Tectonophysics 397:5–20

    Article  Google Scholar 

  • Magri F, Bayer U, Jahnke C, Clausnitzer V, Diersch HJ, Fuhrmann J, Möller P, Pekdeger A, Tesmer M, Voigt HJ (2005b) Fluid-dynamics driving saline water in the North East German Basin. Int J Earth Sci 94:1056–1069

    Article  Google Scholar 

  • Magri F, Bayer U, Tesmer M, Möller P, Pekdeger A (2008) Salinization problems in the NEGB: results from thermohaline simulations. Int J Earth Sci 97:1075–1085

    Article  Google Scholar 

  • Manning CE, Ingebritsen SE (1999) Permeability of the continental crust: implications of geothermal data and metamorphic systems. Rev Geophys 37(1):127–150. doi:10.1029/1998RG900002

    Article  Google Scholar 

  • Möller P, Weise SM, Tesmer M, Dulski P, Pekdeger A, Bayer U, Magri F (2008) Salinization of groundwater in the North German Basin: results from conjoint investigation of major, trace element and multi-isotope distribution. Int J Earth Sci 97(5):1057–1073

    Article  Google Scholar 

  • Neuzil CE (1994) How permeable are clays and shales? Water resources research, v. 30/2 30(2):145–150

    Article  Google Scholar 

  • Nield DA, Bejan A (2006) Convection in porous media. Springer, New York

  • Noack V, Cherubini Y, Scheck-Wenderoth M, Lewerenz B, Höding T, Simon A, Moeck I (2010) Assessment of the present-day thermal field (NE German Basin)—Inferences from 3D modelling. Chemie Der Erde-Geochemistry 70:47–62

    Article  Google Scholar 

  • Noack V, Scheck-Wenderoth M, Cacace M (2012) Sensitivity of thermal models in Brandenburg (NE German Basin) with respect to the choice of thermal properties and boundary conditions. Environ Earth Sci. doi:10.1007/s12665-012-1614-2

  • Norden B, Förster A (2006) Thermal conductivity and radiogenic heat production of sedimentary and magmatic rocks in the Northeast German Basin. AAPG Bull 90:939–962

    Article  Google Scholar 

  • Norden B, Förster A, Balling N (2008) Heat flow and lithospheric thermal regime in the Northeast German Basin. Tectonophysics 460:215–229

    Article  Google Scholar 

  • Norden B, Förster A, Behrends K, Krause K, Stecken L, Meyer R (2012) Geological 3-D model of the larger Altensalzwedel area, Germany, for temperature prognosis and reservoir simulation. Environ Earth Sci 67:511–526. doi:10.1007/s12665-012-1709-9

    Article  Google Scholar 

  • Ollinger D, Baujard C, Kohl T, Moeck I (2010) Distribution of thermal conductivities in the Gross Schonebeck (Germany) test site based on 3D inversion of deep borehole data. Geothermics 39:46–58

    Google Scholar 

  • Ondrak R, Wenderoth F, Scheck M, Bayer U (1998) Integrated geothermal modeling on different scales in the Northeast German basin. Geol Rundsch 87:32–42

    Article  Google Scholar 

  • Person MA, Raffensperger JP, Ge S, Garven G (1996) Basin-scale hydrogeologic modeling. Rev Geophys 34(1):61–87

    Article  Google Scholar 

  • Petitta M, Primavera P, Tuccimei P, Aravena R (2011) Interaction between deep and shallow groundwater systems in areas affected by Quaternary tectonics (Central Italy): a geochemical and isotope approach. Environ Earth Sci 63:11–30. doi:10.1007/s12665-010-0663-7

    Article  Google Scholar 

  • Scheck M, Bayer U (1999) Evolution of the Northeast German Basin - inferences from a 3D structural model and subsidence analysis. Tectonophysics 313:145–169

    Article  Google Scholar 

  • Schulz R, Agemar T, Alten A-J, Kühne K, Maul A–A, Pester S, Wirth W (2007) Aufbau eines geothermischen Informationssystems für Deutschland. Erdöl Erdgas Kohle 123(2):76–81

    Google Scholar 

  • Smith L, Chapman DS (1983) On the Thermal Effects of Groundwater Flow. 1. Regional scale systems. J Geophys Res 88(B1):593–608

    Article  Google Scholar 

  • Stackebrandt W (2009) Subglacial channels of Northern Germany - a brief review. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 160(Heft3):203–210

    Article  Google Scholar 

  • Stackebrandt W, Manhenke V (eds) (2002) Atlas zur Geologie von Brandenburg im Maßstab 1:1 000 000. Landesamt für Geowissenschaften und Rohstoffe, Kleinmachnow

  • Stackebrandt W, Manhenke V (eds) (2010) Atlas zur Geologie von Brandenburg im Maßstab 1:1 000 000. Landesamt für Geowissenschaften und Rohstoffe, Kleinmachnow

    Google Scholar 

  • Tesmer M, Otto R, Pekdeger A, Möller P, Bayer U, Magri F, Fuhrmann J, Enchery G, Jahnke C, Voigt H (2005) Migration paths and hydrochemical processes of groundwater salinization in different aquifer systems of the North German Basin., Dynamics of the Central European Basin System : DFG-SPP 1135; 4th Rundgespräch, 30th Nov–2nd Dec, Eringerfeld, pp 123–126

  • Turcotte DL, Schubert G (2002) Geodynamics. Cambidge University Press, New York

    Book  Google Scholar 

  • Vosteen H, Rath V, Schmidt-Mumm A, Clauser C (2004) The thermal regime of the Northeastern-German Basin from 2-D inversion. Tectonophysics 386(1–2):81–95

    Google Scholar 

Download references

Acknowledgments

This study is part of the GeoEn project and has been funded by the German Federal Ministry of Education and Research in the program “Spitzenforschung in den neuen Ländern” (BMBFGrant03G767 A/B/C). We thank our colleagues from the geological surveys of Landesamt für Bergbau, Geologie und Rohstoffe Brandenburg for providing the main data to construct the refined 3D structural model of the basin fill and for fruitful discussions. Landesamt für Geologie und Bergwesen Sachsen-Anhalt and Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern kindly provided additional well data to complement the database of the reference structural model outside of the Brandenburg area. A huge thank to Björn Lewerenz and Björn Onno Kaiser for very helpful computational support. We also thank the anonymous reviewers for their constructive comments which greatly improved the paper. Numerical results have been visualized with the open source post-processor Para View.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Noack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noack, V., Scheck-Wenderoth, M., Cacace, M. et al. Influence of fluid flow on the regional thermal field: results from 3D numerical modelling for the area of Brandenburg (North German Basin). Environ Earth Sci 70, 3523–3544 (2013). https://doi.org/10.1007/s12665-013-2438-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2438-4

Keywords

Navigation